The Bondage Number of Graphs with Crossing Number Less than Four
نویسندگان
چکیده
The bondage number b(G) of a graph G is the smallest number of edges whose removal results in a graph with domination number greater than the domination number of G. Kang and Yuan [Bondage number of planar graphs. Discrete Math. 222 (2000), 191198] proved b(G) 6 min{8,∆+ 2} for every connected planar graph G, where ∆ is the maximum degree of G. Later Carlson and Develin [On the bondage number of planar and directed graphs. Discrete Math. 306 (8-9) (2006), 820-826] presented a method to give a short proof for this result. This paper applies this technique to generalize the result of Kang and Yuan to any connected graph with crossing number less than four.
منابع مشابه
The bondage numbers of graphs with small crossing numbers
The bondage number b(G) of a nonempty graph G is the cardinality of a smallest edge set whose removal from G results in a graph with domination number greater than the domination number (G) ofG. Kang andYuan proved b(G) 8 for every connected planar graph G. Fischermann, Rautenbach and Volkmann obtained some further results for connected planar graphs. In this paper, we generalize their results ...
متن کاملMETA-HEURISTIC ALGORITHMS FOR MINIMIZING THE NUMBER OF CROSSING OF COMPLETE GRAPHS AND COMPLETE BIPARTITE GRAPHS
The minimum crossing number problem is among the oldest and most fundamental problems arising in the area of automatic graph drawing. In this paper, eight population-based meta-heuristic algorithms are utilized to tackle the minimum crossing number problem for two special types of graphs, namely complete graphs and complete bipartite graphs. A 2-page book drawing representation is employed for ...
متن کاملOn the bondage number of planar and directed graphs
The bondage number b(G) of a nonempty graph G is defined to be the cardinality of the smallest set E of edges of G such that the graph G − E has domination number greater than that of G. In this paper we present a simplified proof that b(G) ≤ min{8,∆(G) + 2} for all planar graphs G, give examples of planar graphs with bondage number 6, and bound the bondage number of directed graphs.
متن کاملMETAHEURISTIC ALGORITHMS FOR MINIMUM CROSSING NUMBER PROBLEM
This paper presents the application of metaheuristic methods to the minimum crossing number problem for the first time. These algorithms including particle swarm optimization, improved ray optimization, colliding bodies optimization and enhanced colliding bodies optimization. For each method, a pseudo code is provided. The crossing number problem is NP-hard and has important applications in eng...
متن کاملThe bondage numbers and efficient dominations of vertex-transitive graphs
The bondage number of a graph G is the minimum number of edges whose removal results in a graph with larger domination number.A dominating setD is called an efficient dominating set ofG if |N−[v]∩D|=1 for every vertex v ∈ V (G). In this paper we establish a tight lower bound for the bondage number of a vertex-transitive graph. We also obtain upper bounds for regular graphs by investigating the ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Ars Comb.
دوره 112 شماره
صفحات -
تاریخ انتشار 2013